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a b s t r a c t

Finding sensitive and appropriate technologies for non-invasive observation and early
detection of Alzheimer’s disease (AD) is of fundamental importance to develop early treat-
ments. In this work we develop a fully automatic computer aided diagnosis (CAD) system
for high-dimensional pattern classification of baseline 18F-FDG PET scans from Alzheimer’s
disease neuroimaging initiative (ADNI) participants. Image projection as feature space
dimension reduction technique is combined with an eigenimage based decomposition
for feature extraction, and support vector machine (SVM) is used to manage the classifica-
tion task. A two folded objective is achieved by reaching relevant classification perfor-
mance complemented with an image analysis support for final decision making. A
88.24% accuracy in identifying mild AD, with 88.64% specificity, and 87.70% sensitivity is
obtained. This method also allows the identification of characteristic AD patterns in mild
cognitive impairment (MCI) subjects.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over 4 million people in the US have probable AD, the 10% of the population over the age of 65 years (3% of those 65–
74 years old and 45% over 85 years old) [20], and a very substantial number have other dementias [61]. The incidence of
dementia is expected to double during the next 20 years, thus becoming an enormous public health problem [9]. No existing
treatment has yet been shown to slow the progression of AD but a large number of potential treatments are under develop-
ment. For emergence of effective treatments for AD as well as performance of prevention trials, it is of fundamental impor-
tance to identify those subjects at high risk for cognitive decline and dementia at the earliest stage possible. At the present
time, a certain AD diagnostic can only be reached after autopsy [31], therefore requiring developments of non-invasive
methods for early diagnosis. Extensive progress has been achieved to this end, but an accurate and early diagnosis of the
AD still remains a challenge.

The positron emission tomography (PET) scans being used within this work are an example of non-invasive, three-dimen-
sional functional imaging modalities measuring the brain’s rate of glucose metabolism with the tracer [18F] Fluorodeoxyglu-
cose. In AD, characteristic brain regions show decreased glucose metabolism, specifically bilaterally regions in the temporal
. All rights reserved.
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and parietal lobes, posterior cingulate gyri and precunei, as well as frontal cortex and whole brain in more severely affected
patients [17,23,24,11,19,47,49,50,34,33,39,1,53,40]. Lower glucose metabolism has been correlated with dementia severity,
either by assessing the correlation between performance on measures of overall cognitive function, such as the mini-mental
state exam (MMSE), and cerebral metabolic rate for glucose (CMRgl) reduction over all study participants, or by comparing
subgroups based on measures of disease severity, such as the MMSE, clinical dementia rating (CDR), or Global Deterioration
Scale score [11,50,24,65].

Data used in the preparation of this article were obtained from the Alzheimer’s disease neuroimaging initiative (ADNI)
database (www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5 year public–private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of MCI and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.

The Principle Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Centre and University of California –
San Francisco. ADNI is the result of efforts of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the US and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55–90, to participate in the research – approximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with early AD to be followed for 2 years
(for more information see www.adni-info.org).

A vast amount of the AD literature suggests that early manifestations of AD occur in a prodromal stage, years before the
symptoms of the disease appear and are clinically detectable, allowing for other non-invasive techniques for detection as
nuclear imaging. The examination of the predictive abilities of nuclear imaging with respect to AD in this early stage has
been widely studied, through visual assessments performed by experts [8,15,33,66], or by means of voxel-wise statistical
analysis as SPM, NEUROSTAT & 3D-SSP, ANOVA or MANCOVA [25,18,36,64,71,63,45,54]. Recently, a new branch of emerging
research has demonstrated that Machine Learning techniques may also be powerful analysis tools of brain imaging, with re-
cent works adapting state-of-art computer vision techniques in MRI for early AD diagnosis [21,16], or Support Vector Ma-
chine classification in single photon emission computerized tomography (SPECT) analysis [26,42,35,44,12,62]. This
decision taking oriented framework usually considers as one observation all the voxels in a single scan, allowing for a regio-
nal or global brain image analysis, contrary to voxel-wise statistical tools. On the other hand, it suffers from the curse of
dimensionality problem. This major problem, associated with pattern recognition systems, occurs when the number of avail-
able features for designing the classifier is very large compared with the number of available training examples.

One of the most successful and prolific solutions to the small sample size problem is based in the eigenimage approach of
Turk and Pentland [73], originally applied to the related problem of face detection. Principal component analysis (PCA) or
independent component analysis (ICA) eigenimage decomposition allows to detect underlying patterns that differentiate
individuals within a population, even if the differences are subtle. This is the case in AD diagnosis, where eigenimage analysis
has been successfully adapted in several ways [35,42,44] for SPECT imaging and for PET imaging [43]. From these works one
may conclude that a reduced number of components or eigenbrains are necessary to describe the information about Alzhei-
mer’s disease encoded in the images. However, some eligibility criteria must be chosen in order to select those discriminant
components, based on some a priori knowledge of the underlying data structure.

The novelty of the approach presented in this work resides in a CAD construction in the eigenimage framework for PET
imaging, which does not require for an eigenbrain selection (see Section 2.3), avoiding the introduction of subjective infor-
mation in the process, and guaranteeing the inclusion of characteristic AD patterns at the same time. This last fact allows for
a meaningful eigenimage decomposition, and a image analysis support for the final decision making. These advantages are
achieved by searching for characteristic vectors representing AD, subsequently demixing with PCA and ICA, and using pro-
jections for growing a SVM classifier. PCA and ICA have been proven to be useful in a vast variety of fields [5,72,22,29,3,57].
On the other hand, SVMs have attracted recent attention from the pattern recognition community due to a number of the-
oretical and computational merits derived from Statistical Learning Theory [74]. These techniques have also been success-
fully used in a large number of applications, including pedestrian detection [10], time-series forecasting [30], speech
processing [60,28] and medical imaging diagnosis [59,58,41,26,27,35]. The proposed method, tested on 401 ADNI PET
images, is developed with the aim of reducing the subjectivity in visual interpretation of these scans by clinicians, thus pro-
viding an objective methodology for improving the accuracy of diagnosing Alzheimer’s disease in its early stage.
2. Materials and methods

2.1. Subjects

Baseline FDG PET data from 401 ADNI participants, acquired from Siemens, general electric (GE), Philips, Siemens HRRT
and BioGraph HiRez PET scanners, were collected from the ADNI Laboratory on NeuroImaging (LONI, University of California,
Los Angeles) website (http://www.loni.ucla.edu/ADNI/).
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Participant’s enrolment was conditioned to some eligibility criteria. General inclusion/exclusion criteria were as follows:

� Normal control subjects: MMSE scores between 24–30 (inclusive), a CDR of 0, non-depressed, non MCI, and non-demen-
ted. The age range of normal subjects will be roughly matched to that of MCI and AD subjects. Therefore, there should be
minimal enrolment of normals under the age of 70.
� MCI subjects: MMSE scores between 24–30 (inclusive), a memory complaint, have objective memory loss measured by

education adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of
impairment in other cognitive domains, essentially preserved activities of daily living, and an absence of dementia.
� Mild AD: MMSE scores between 20–26 (inclusive), CDR of 0.5 or 1.0, and meets NINCDS/ADRDA criteria for probable AD.

Therefore, FDG PET data was separated into three different classes: 97 normal control (NC) (age range: 76.7 ± 5.2
(mean ± standard deviation)), 209 MCI (age range: 76.0 ± 7.7), and 95 AD (age range: 77.3 ± 7.4). From the 209 MCI, ADNI
sites provide information about those who are stable after 2 years follow-up, and those who have converted into AD, which
results as 45 MCI converters (MCI-c) and 164 MCI non-converters (MCI-nc). 182 images from the dataset are held-out for
test, while 219 are used for training and cross-validation.

For posterior analysis, the data was arranged into three different groups. For testing early diagnosis capabilities, MCI was
considered a pre-stage of AD [52,53,21], and the following groups where designed:

� Group 1 All the database images are considered. Both AD and MCI patients are labelled as positive, and Normal controls as
negative.
� Group 2 Only AD (positive) and Normal controls (negative) patient images are considered.
� Group 3 Only MCI (positive) and Normal controls (negative) patient images are considered.

2.2. Image database pre-processing

FDG PET scans were acquired according to a standardized protocol. A 30 min dynamic emission scan, consisting of 65 min
frames, was acquired starting 30 min after the intravenous injection of 5.0 ± 0.5 mCi of 18F-FDG, as the subjects, who were
instructed to fast for at least 4 h prior to the scan, lay quietly in a dimly lit room with their eyes open and minimal sensory
stimulation. Data were corrected for radiation–attenuation and scatter using transmission scans from Ge-68 rotating rod
sources and reconstructed using measured-attenuation correction and image reconstruction algorithms specified for each
scanner (http://www.loni.ucla.edu/ADNI/Data/ADNIData.shtml). Following the scan, each image was reviewed for possible
artifacts at the University of Michigan and all raw and processed study data was archived.

Subsequently, the images were normalized through a general affine model, with 12 parameters [76] using the SPM5 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/software/spm5). After the affine normalization, the resulting image was registered
using a more complex non-rigid spatial transformation model (see first step in Fig. 1). The non-linear deformations to the
Montreal Neurological Imaging (MNI) Template were parametrized by a linear combination of the lowest-frequency compo-
nents of the three-dimensional cosine transform bases [4]. A small-deformation approach was used, and regularization was
by the bending energy of the displacement field, ensuring that the voxels in different FDG-PET images refer to the same ana-
tomical positions in the brains. After spatial normalization, an intensity normalization was required in order to perform di-
rect images comparisons between different subjects. The intensity of the images was normalized to a value Imax, obtained
Fig. 1. Preprocessing steps to extract features from raw data.
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averaging the 0.1% of the highest voxel intensities exceeding a threshold. The threshold was fixed to the 10th bin intensity
value of a 50 bins intensity histogram, for discarding most low intensity records from outside-brain regions, and preventing
image saturation.

2.3. Feature extraction

Brain images of this study are 3D images ti of size M = 79 � 95 � 69 � 5 � 105 voxels. The approach taken in this work for
feature extraction is schematically shown in Fig. 1. It starts by rearranging each normalized image to a vector of dimension
M, thus considering each patient image as a vector of the euclidean space ti 2 RM belonging to the class AD, MCI or NC. Thus,
images are considered as a vectors in a high dimensional vectorial space, the ‘brain images space’. In this space, most of the
dimensions represent voxels that are not relevant for AD discrimination, and a dimensional reduction is required.

A dimensional reduction is achieved by searching for a discriminative subspace S of RM , and project the raw data onto this
subspace. This subspace S is spanned by a basis of characteristic vectors {pk} that represent each class. Projecting an image
vector ti onto S determines its coordinates in this subspace. This coordinates are used as features, since they give a measure
of the similarity between the image ti and the class Ck, represented by pk.

We present three different ways of constructing this subspace S. The first immediate hint is to obtain a class average im-
age vector for each class, as a way of characterizing these classes and use them as a basis of S. Specifically let the full 3D brain
image database be t1,t2, . . . ,tN, each pertaining to a class C1 ¼ AD; C2 ¼ MCI; C3 ¼ NC. A within class average brain image p
can be defined as:
pk ¼
1

Nk

X
fti�Ckg

ti; k ¼ 1;2;3; ð1Þ
where Nk denotes the number of images in the class Ck. These average images form a vector basis, spanning the subspace S of
the ‘brain images space’. For example, in the case of group 2, a two element basis pAD, pNC will be obtained. The projection of
an image vector into this subspace will weigh the contribution of each mean image vector in describing it, which may be
used as features for classification. But these projection coefficients may be highly correlated (see Fig. 4). This suggests the
use of the average images to construct a new image basis, from whose projection coefficients become separable. This can
be achieved with the use of PCA and ICA.

2.4. PCA

PCA is a standard technique for extracting the most significant features from a dataset, frequently used to reduce the raw
data to a subset of features that contains the largest amount of variance. It is based on a linear transformation acting on a
zero mean dataset, that diagonalizes its covariance matrix. The resulting eigenvectors are a new set of uncorrelated variables,
whose variance is represented by its eigenvalue. The use of PCA within this work is justified not as a dimensional reduction
technique but it is applied to the average images vector obtained by Eq. (1). Therefore, we introduce PCA as a procedure for
extracting a decorrelated eigenvector basis from the previous defined average image vectors. Similar frameworks in which a
reduced number of sources are obtained from a linear combination of the mixtures have also been used in other fields as face
recognition problem [5], or functional magnetic resonance imaging (fMRI) [46].

Applying PCA to the set pk defined in Eq. (1) can be seen as a simple basis change in S, due to its linear character. This
transformation changes to an eigenvector basis set of image vectors whose correlation is minimized. We refer to them as
‘eigenbrains’ because of their brain like appearance (see Appendix A.1 for details). The number of vectors in this new basis
is the same as the number of classes used to define the average images. Therefore, none of the eigenbrains are neglected,
independently from its variance eigenvalue. The projection of the image vectors onto the eigenbrains space, i.e. the subspace
spanned by the eigenbrains, will determine the coordinates of each image vector in this subspace. It is expected that this
projection produce a pattern more suitable for class separation than the projection onto the average image space, due to
the eigenbrains decorrelation.

2.5. ICA

PCA only takes into account pair-wise relationships between voxels of the brain images. It seems reasonable to expect
that important information may be contained in the high-order relationships among voxels, given in terms of cumulants,
for which ICA is a sensitive method. The ICA transformation is used for capturing group-differences from high order voxel
relations, generating from the original average images sources pk defined in Eq. (1) a new set of statistically independent
components. As the PCA-eigenbrains, all these latent variables will be used to construct a subspace of the brain image space,
where the essence of the class differences is enhanced upon projecting the image vectors onto it. For achieving the ICA trans-
formation, we made use of FastICA [55] which is an iterative fixed-point algorithm, with the contrast function chosen to be a
cubic polynomial (see Appendix A.2 for details). FastICA has been proven to be a reliable algorithm in other fields, as fMRI
analysis, if compared to other algorithms as Infomax or JADE [69]. The stronger constraint of independence of ICA over PCA,
theoretically implies a greater capability of class prominent features detection.



I.A. Illán et al. / Information Sciences 181 (2011) 903–916 907
2.6. Classification

Once the basis vector {pk} of the subspace S is obtained, a set of features can be extracted to train a SVM with labelled
data. The training data is obtained from the raw data as:
Fig. 2.
column
ðxkÞi ¼ pkti; i ¼ 1; . . . ;N; k ¼ 1;2; . . . ;K: ð2Þ
These coefficients (xk)i are the coordinates of the ith-brain image ti in the subspace spanned by the average images (for pk

being the average image vectors basis), the eigenbrains (for pk being the eigenbrains basis), or the independent components
(for pk being the ICs basis). We used these coordinates values x as N K-dimensional training vectors:
x i ¼ ½x1; x2; . . . ; xK �i; i ¼ 1;2; . . . ;N; ð3Þ
each of them with its corresponding class label yi 2 {±1}. In practice, K = 2 when using two average images from the classes
AD and NC, K = 3 when using three average images from the classes AD, MCI and NC, and K = 4 when using four average
images from the classes AD, MCI-c, MCI-nc and NC. Therefore, only a 2, 3 or 4-dimensional vector x encodes all the informa-
tion of the PET brain scans relevant for AD discrimination.

The SVM ‘learns’ from the labelled training data obtaining a hyperplane that separates the data into the two classes, max-
imizing the margin between them (see Appendix A.3 for details). Once it has been obtained, new samples with unknown
labels can be categorized. A feature vector is obtained from the test image using Eqs. (2) and (3), and it is classified according
to its sign in Eq. (A.7), once the hyperplane is determined. Also, samples with known labels may be used to test the reliability
of the method, with some cross-validation strategy.

3. Results

The classification performance of our approach is tested in three steps: training, cross-validation and test. Cross validation
is achieved by means of the leave-one-out method, a technique that iteratively holds out a subject for test, while training the
classifier with the remaining subjects, so that each subject is left out once. Different experiments were performed by con-
sidering the three groups described in Section 2.1, and by varying the feature vectors dimension, given by K in Eq. (3), from
2 to 4. This dimension reduction was achieved using different number of average vectors to construct the feature vectors,
considering NC and non-NC average vectors (K = 2); NC, AD and MCI (K = 3); and NC, AD, MCI-c, and MCI-nc (K = 4). Once
the average vectors were obtained from the training set, each image was processed using Eq. (2) to obtain the feature vectors
used to grow the SVM classifier. After the optimum parameters were obtained, the classification performance was tested in a
held out set of images.

Fig. 2 shows the results achieved using PCA to decorrelate the average vectors, while Fig. 3 displays the results obtained
with ICA, for different SVM kernels: linear and RBF, and the different groups. Table 1 expands the classification results in the
PCA results of classification using: linear kernel (upper row), RBF kernel (lower row). Varying the number of components, accuracy results (first
), sensitivity results (second column), specificity results (third column), expressed in %.



Fig. 3. ICA results of classification using: linear kernel (upper row), RBF kernel (lower row). Varying the number of components, accuracy results (first
column), sensitivity results (second column), specificity results (third column), expressed in %.

Table 1
Statistical measures of performance of PCA and ICA feature selection methods, for the three sample groups, and using four components. Voxel-as-features (VAF)
results are reported as reference, using two classifiers: k-nearest-neighbour (knn with k = 5) and SVM linear (no kernel is used due to peaking phenomenon).
Comparisons are established with PCA-fisher [35,42–44] for the same number of components.

VAF PCA ICA PCA-f

knn Linear kernel RBF kernel Linear kernel RBF kernel Linear kernel RBF kernel Linear kernel

Group 1
Accuracy (%) 65.38 74.73 77.47 74.73 75.82 76.37 73.63 74.18
Specificity (%) 61.36 25.00 34.09 15.91 34.09 20.45 0.00 15.91
Sensitivity (%) 66.67 90.58 91.30 93.48 89.13 94.20 97.10 92.75
Positive likelihood 1.7255 1.2077 1.3853 1.1116 1.3523 1.1843 0.9710 1.1030
Negative likelihood 0.5432 0.3768 0.2551 0.4099 0.3188 0.2834 1.0000 0.4555

Group 2
Accuracy (%) 65.88 81.18 88.24 82.35 87.06 75.29 67.06 65.88
Specificity (%) 88.64 84.09 88.64 70.45 86.36 59.09 75.00 63.64
Sensitivity (%) 41.46 78.05 87.80 95.12 87.80 92.68 58.54 68.29
Positive likelihood 3.6488 4.9059 7.7268 3.2195 6.4390 2.2656 2.3415 1.8780
Negative likelihood 0.6604 0.2610 0.1376 0.0692 0.1412 0.1238 0.5528 0.4983

Group 3
Accuracy (%) 56.03 68.79 68.09 67.38 70.21 68.79 65.96 68.79
Specificity (%) 63.64 29.55 34.09 15.91 40.91 18.18 9.09 25.00
Sensitivity (%) 52.58 86.60 83.51 90.72 83.51 91.75 91.75 88.66
Positive likelihood 1.4459 1.2291 1.2670 1.0789 1.4132 1.1214 1.0093 1.1821
Negative likelihood 0.7452 0.4536 0.4838 0.5832 0.4032 0.4536 0.9072 0.4536
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held out set for the case of K = 4, once the previously described steps, projection, PCA and ICA have been applied to the raw
data. Three parameters that measure the performance of the classification task are: the Accuracy, the Specificity and the Sen-
sitivity. The definitions are:
Accuracy ¼ Tpþ Tn
Tpþ Tnþ Fpþ Fn

; PL ¼ Sensitivity=ð1� SpecificityÞ;

Sensitivity ¼ Tp
Tpþ Fn

; NL ¼ ð1� SensitivityÞ=Specificity;

Specificity ¼ Tn
Tnþ Fp

;



Fig. 4. Linear kernel SVM classifier (support vectors (SVs) are marked with circles, see legend) and training vectors xi = [X1,X2]i (right) obtained projecting
each image onto the NC and AD mean images (left, transaxial slices).
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where Tp, Tn, Fp, and Fn denote true positives, true negatives, false positives, and false negatives, respectively. Positive and
negative likelihoods (PL/NL) are also displayed as a measure of the positive and negative predictive value of the method, gi-
ven its prevalence independence. Results using PCA and ICA are compared to VAF [68,67] and PCA-f [35,42,43], selecting the
best performance scenarios for kernel SVM and knn classifiers.1

The training process is showed in detail in Figs. 4–6, where the case of K = 2 is analysed in Group 2. The x1 and x2 values,
obtained from Eq. (3) by projecting each image vector into the subspace spanned by the AD (including MCIs) and NC average
images, respectively, are represented for the cases of projection, PCA and ICA, together with their eigenimages.

Fig. 4 shows the x1 and x2 values obtained when simply projecting each image into the AD and NC mean images. Regard-
less of intensity differences of the mean images in some brain regions as the posterior cingulate gyri, these are subtle dif-
ferences. Therefore, the x’s coefficients are similar, revealing a high correlation between them. This allows to state that
mean images are not suitable vectors for classification, and justifies the use of PCA and ICA for extracting an independent
or decorrelated vector basis from them.

Fig. 5 shows how the application of PCA on the mean images allows a class separation, and an efficient classifier construc-
tion. The separation of the training samples into the two classes is given by the x2 value (the Eigenbrain 2 coordinate), while
the value of x1 (the Eigenbrain 1 coordinate) plays no role in the classifier construction. Concretely, positive values of x2 cor-
respond with AD affected subjects, while negative ones with NC. The interpretation of this fact may be guided by the eigen-
brains appearance. Eigenbrain 1 has a normal PET brain image appearance, while Eigenbrain 2 is an implausible one, indeed
complementary to Eigenbrain 1. Eigenbrain 1 serves as basis to construct any database brain image sample, by contributing
with the basis aspects of a functional brain image, while Eigenbrain 2 pinpoints the disease affected areas which are class-
discriminative. Specifically, it highlights the posterior cingulate gyri and precunei, as well as the temporo-parietal region,
both considered as typically affected by glucose hypometabolism in the AD [13,48,70,51]. A closer look shows that it also
selects small thalamus regions, which has never been described as a relevant region for diagnosis. This has to be interpreted
as a spatial normalization failure: when comparing AD and NC mean images, a spatial mismatch is found between thalamus
regions. Since PCA coordinates group the maximum variance, adjacent thalamus regions are selected to construct Eigenbrain
2, but are small enough to introduce negligible information into the feature selection. To summarize, a sample is taken as AD
when its x2 value is positive, independently from its x1 value, therefore complementing Eigenbrain 1 image with lower inten-
sity values in the cingulum, precunei and temporo-parietal regions. On the other hand, a sample is considered as NC when its
x2 value is negative, adding to Eigenbrain 1 a normal glucose metabolism pattern to the previous mentioned regions.

The class separability improvement due to ICA is shown in Fig. 6. A similar analysis to the PCA one can be made, since the
independent component (IC) 1 is similar to the Eigenbrain 2, but now IC2 introduces some discriminative power, contrary to
Eigenbrain 1. This fact is reflected in the classifier slope, revealing that a combination of x1 and x2 values are necessary to
determine the image class. The main difference between IC2 and Eigenbrain 1 is the extremely low intensity values of
1 Detailed results concerning the comparison of different kernels and classifiers can be found on [44].



Fig. 5. Linear kernel SVM classifier (support vectors are marked with circles) and training vectors xi = [x1,x2]i (right) obtained projecting each image onto
the PCA Eigenbrain images space (left, transaxial slices).

Fig. 6. Linear kernel SVM classifier (support vectors are marked with circles) and training vectors xi = [x1,x2]i (right) obtained projecting each image onto
the IC images space (left, transaxial slices).
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cingulum, temporo-parietal regions as well as lower intensity values in the frontal cortex. The last fact is related to more
severely AD affected patients, and therefore implies that a combination of low x1 and x2 values (the lower left corner) rep-
resent severely AD affected subjects, while high x1 and x2 values (the upper right corner) are more likely to represent NC
image patterns, with its intermediate region delimited by the classifier line.

Concerning the different feature extraction techniques, performance measures of PCA and ICA methods are shown on
Figs. 2 and 3, respectively, for the three groups. Use of different kernels are also displayed, providing higher sensitivity values
with the use of RBF kernels and higher specificity values when using a linear kernel. The election of the kernel to use would
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depend on whether higher sensitivity or specificity values are desired, since accuracy values are similar for both kernels.
Group 2 shows more stable behaviour and higher specificity values than groups 1 and 3. This may be due to balance condi-
tion of the training samples. Group 2 satisfies this condition (with 53 positives and 52 negatives in the training data), but not
group 1 and 3 (with 167 positives and 52 negatives, and 114 positives and 52 negatives, respectively) introducing imbal-
anced training datasets, and therefore lower specificity values when using a small number of components.

These low specificity values may also be explained by the introduction in groups 1 and 3 of MCI patients, whose image
pattern of brain atrophy is complex and highly variable, and it evolves in time as the disease progresses [51,18,38]. As the
number of components grows, information about the MCI pattern heterogeneity is introduced in the classifier, thus enhanc-
ing the specificity values in the mentioned groups. When average images of MCI-c and MCI-nc are added to those of NC and
AD (K = 4), a 4-dimensional feature vector is produced. Eigenbrains 3 and 4 are obtained in addition to eigenbrains 1 and 2 of
Fig. 5. 4-dimensional spaces are not directly representable, but projections in bidimensional spaces can capture relevant
information, as the projection in the x2-x3 axis given in Fig. 7. This figure illustrates how the information of MCIs is intro-
duced in the classification, showing eigenbrains 2 and 3 (left), and its corresponding coordinates for the training vectors
(right) of group 1. In this figure, Eigenbrain 1 has been merged with eigenbrain 2 and 3 in order to allow to identify the brain
regions selected by each one. The complementing information introduced by the MCIs is contained in the x3, since x1 and x2

are of the same nature as in Fig. 5. Different colours have been used in order to distinguish between the three classes. The x3

value allows the identification of MCI-c subjects, which are likely to have a positive value in the eigenbrain 3 projection, cor-
responding to a soft glucose hypometabolism in temporal lobe areas. Mild AD subjects are more likely characterized by
hypometabolism in posterior cingulate gyri and precunei and parietal lobes, while NC appear to have positive x3 and x2 val-
ues, corresponding to normal metabolism pattern in the previous mentioned areas.

On the other hand, the values of x2 and x3 for stable MCI subjects do not take a preferred sign. This fact allows to identify
those MCI converters from the stable ones, but is not a sign of classification failure, since relevant classification information
is contained in eigenbrain 4 and its projection. Moreover, MCI subject class may incorporate Fronto-Temporal Dementia af-
fected subjects, or reversion cases, that is, subjects that turn out to be controls in the 2 years follow up. Therefore, the spread
of x2 and x3 for stable MCI suggests only a portion of MCI images present a characteristic AD pattern. On the contrary, MCI-c
present similar patterns as those of early AD. Important is to add that eigenbrain 1 accumulate the 99.83% of the variance,
while eigenbrains 2, 3 and 4 explain the remaining 0.11%, 0.04% and 0.03%. In other words, differences that allow to inden-
tificate AD and MCI patients from NC are very subtle, and those of MCI-c are minimal.

In Table 1, the case of maximum number of components is reported in detail, because of its highest classification rates.
The voxel-as-features (VAF) approach results are reported as reference, since different studies have concluded that this
method is, at least, comparable to visual assessments performed by experts [68,67]. The use of kernels in combination with
ICA or PCA leads to better performance, due to the small dimensionality of the feature space, being ICA slightly more efficient
than PCA. In all the groups, both methods outperform the VAF approximation [68,67], as well as PCA-fisher [35,42,43] using
the same number of components.
Fig. 7. Linear kernel SVM classifier and some components of training vectors x2 and x3 (right) obtained projecting each image onto the third and fourth
eigenimages (left, transaxial slices). MCI converters (MCI-c) are represented by circles in contrast with non-converters (MCI-nc).
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4. Discussion

The use of imbalanced training datasets of groups 1 and 3 causes two major problems. Firstly, the use of performance
parameters as specificity or sensitivity is inappropriate, since they are sample prevalence dependent. For instance, a low
specificity value in a imbalanced dataset may not reflect a high false negative rate. This problem is solved using other sample
prevalence independent parameters, as positive or negative likelihoods. Secondly, classifiers are limited in their performance
when dealing with imbalanced datasets [37,75]. However, SVM have been reported to perform well with moderately imbal-
anced databases, as ADNI with a ratio of 1–3, even without any modification [2]. SVM is constructed using only feature vec-
tors that are close to the boundary, i.e. the support vectors. This means that SVM is unaffected by non-noisy instances far
away from the boundary even if they are huge in number. The election of SVM to manage the classification task may give
response to this second problem.

Differences in the images due to factors not related to AD are an important source of variability that may affect clas-
sification, as scanner differences or formats. If the approach of [35,42,43] is taken, it is found that first two eigenbrains
reflect only differences in the thalamus regions as the biggest source of variation between images, and AD related patterns
are a less important source. This may not happen when working with other databases but ADNI, as in [35,42]. This prob-
lem may be tackled by extracting the eigenimage basis from intra-class mean images defined in Eq. (1). Therefore, not AD
related issues are soften while maintaining AD differences. Moreover, an overfitting to a specific training database is
avoided, increasing generalization capability. On the other hand, it is possible to improve PCA-f results on ADNI presented
in Table 1 by increasing the number of components up to 8 and/or using some eligibility criteria for the components [43].
The price paid is the inclusion of some a priori knowledge about the disease for determining the selection criteria and/or
the loss of image analysis support. By using PCA/ICA on Eq. (1), AD related patterns are automatically included in a very
reduced number of eigenbrains, without introducing a priori information and guaranteeing meaningful representations:
graphical displays are possible and partial compensations upon superpositions of positive–negative components are
controlled.

When comparing the method presented in this work with other existing in the literature, one should also consider that
testing with ADNI database excludes advanced AD affected subjects, whose disease image pattern become more marked.
Introducing advanced AD patient images would simplify the classification task. ADNI database represents some ideal lab-
oratory conditions, as subjects are recruited following a restricted clinical criteria to select only early AD related issues.
Following the analysis of Fig. 6, advanced AD affected subjects would lie in the left down corner, far away from the bound-
ary, as well as young normals would lie in the upper right corner, again far away from the boundary, thus having small
effect in the support vector determination, and therefore in the hyperplane definition. The constraints imposed by ADNI
increase the information near the boundary, thus allowing to test the real discrimination capability of the classifier for
early AD.

On the other hand, ADNI patient diagnostics are not pathologically confirmed, introducing some uncertainly on the sub-
ject’s labels. Using these labels, allows to test the robustness of the classifier. This should be also considered when comparing
to other methods tested on autopsy confirmed AD patients, as [32], on which every classifier is expected to improve its per-
formance. Pooled sensitivity and specificity estimates of 1989–2003 studies using FDG-PET for AD diagnosis are 86%, using
visual, ROIs and voxel-based methods [56,52, and references therein], values also outperformed in group 2 results within this
work.
4.1. Conclusions and outlook

For purposes of brain image analysis and early AD diagnosis assistance by pattern disease discrimination, we proposed a
novel CAD based on eigenbrain decomposition, incorporating several key ideas: dimension reduction with projection into a
discriminative subspace, feature extraction with representative vector demixing by means of PCA/ICA, and classification
with kernel-SVM. This fully automatic construction allows to identify characteristic AD patterns on brain images, while dis-
carding other sources of variability, dealing with the high dimensionality problem in PET images with a low computational
cost, and in clinically relevant times. The final decision is supported by an image analysis that emulates the methodology
followed by experts in the visual assessment of images, by pinpointing the same specific brain regions, providing potential
useful information for physicians when facing a new patient’s diagnostic. The robustness and classification capabilities of the
method are tested on 401 ADNI patients yielding to 88.24% accuracy in identifying mild AD, with 88.64% specificity, and
87.70% sensitivity. The method also allows the differentiation between those MCI converters after 2 years and the stable
ones, incluiding also the identification of characteristic AD patterns in stable MCI subjects.

The approach to the CAD system on 401 subject images from ADNI data presented in this work can be complemented
with the remaining images from the database, increasing the sample size (for example MCI-c patients) for statistical analysis.
In this work, the probability distribution function of the MCI converters brain image has been estimated using 45 subjects,
with only 7 confirmed cases. All committee confirmed conversion are expected to be reported when ADNI project ends, mak-
ing it possible to have better estimates of the MCI brain image pdf, as well as reducing the reversion cases considered as MCI.
Also these tools can be used with other information provided by ADNI, as other markers or modalities, for instance 11C-PIB
PET or SPECT images or even to the diagnosis assistance of other diseases.
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Appendix A

A.1. PCA

For applying PCA, it is needed firstly to extract the average of the image set to each 3D brain images ti, producing a new
set hi = ti � t with n = 1,2, . . . ,N. On this set, a PCA transformation is composed by M orthogonal vectors ui, such that
ki ¼
1
N

XN

n¼1

uT
i hn

� �2 ðA:1Þ
is maximum, subject to the constrain
uT
i uj ¼ dij; ðA:2Þ
where dij is the Kronecker delta. The resulting ui and ki are the eigenvectors and eigenvalues, respectively, of the covariance
matrix:
C ¼ 1
N

XN

i¼n

hnhT
n ¼

1
N

AAT
; ðA:3Þ
where A = [h1, . . . ,hN]. We will refer to this orthogonal eigenvector basis {ui}, i = 1, . . . ,M as eigenbrains. To obtain them, it is
necessary to diagonalize the M �M covariance matrix, which for brain images would be approximately a 5 � 105 � 5 � 105 ma-
trix. The computational complexity of the diagonalization process can be significantly reduced by diagonalizing the matrixbC ¼ 1=NAT A, which size is N � N, with N	M [73]. This allows to obtain N of the M eigenvectors un of C, from the eigenvectors
vn of bC as un = Avn, n = 1, . . . ,N. The obtained eigenbrains span a new subspace which we refer to as the ‘‘eigenbrain space’’.

A.2. ICA

The task in ICA is to find a solution to the noiseless blind source separation problem [6,14,7], which can be stated as fol-
lows: let X be an observed random vector and A a full rank matrix such that:
X ¼ AS; ðA:4Þ
where the source signals S are commonly assumed to be stochastically independent: ps(s1, . . . ,sn) = ps1(s1) . . .psn(sn). Thus,
ICA recovers both the sources sj and the mixing process using the independence assumption, that implies decorrelation of
cumulants to all orders. In the linear case, the latter task consists of finding the mixing matrix A. A popular approach is
to find a demixing or separating matrix W so that variables yj in Y = WX are estimates of sj up to scaling and permutation.
In the deflationary approach the sources are estimated one by one, by finding a column vector wj (this will be stored as a row
of W) such that yj ¼ wT

j X is an estimate of sj. Hence W is an estimate of the (pseudo) inverse of A up to scaling and permu-
tation of the rows of W.

The estimation of the independent components and the mixing matrix is done with the help of FastICA [55], which is an
iterative fixed-point algorithm with the following update for w:
w E XgðwT XÞ
� �

� E g0ðwT XÞ
� �

w; ðA:5Þ
where w is one of the rows of the demixing matrix W, and g is the derivative of the contrast function, chosen to be a cubic
polynomial. After each iteration step defined on Eq. (A.5), w is normalized to have unit norm, ensuring that the rows wj of the
demixing matrix are orthogonal.

http://www.fnih.org
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A.3. SVM

SVM is a machine learning algorithm that separates a given set of binary labelled training data with a hyperplane that is
maximally distant from the two classes (known as the maximal margin hyper-plane). The objective is to build a function
f : RK ! f
1g using training data, consisting of K-dimensional patterns xi and class labels yi:
ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN; yNÞ 2 ðRK � f
1gÞ; ðA:6Þ
so that f will correctly classify new examples (x,y). When no linear separation of the training data is possible, SVM can work
effectively in combination with kernel techniques using the kernel trick, so that the hyperplane defining the SVM corresponds
to a non-linear decision boundary in the input space that is mapped to a linearized higher-dimensional space [74]. In this
way the decision function f can be expressed in terms of the support vectors only:
f ðxÞ ¼ sign
XNS

i¼1

aiyiKðsi; xÞ þw0

( )
; ðA:7Þ
where Kð�; �Þ is the kernel function, ai is a weight constant derived form the SVM process and si are the support vectors [74].
Common kernels that are used by SVM practitioners for the non-linear feature mapping are:

� Polynomial
Kðx;yÞ ¼ ½cðx � yÞ þ c�d: ðA:8Þ
� Radial basis function (RBF)
Kðx;yÞ ¼ exp �ckx� yk2
� �

: ðA:9Þ
as well as the linear kernel, in which Kð�; �Þ is simply a scalar product.
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